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Introduction

Over the past few years, a large number of studies have 
 demonstrated not only the ability of bone marrow stem cells to 
differentiate into a wide variety of somatic cells,1-4 including myo-
cytes,5-7 but that this phenomenon takes place spontaneously after 
tissue damage.8-12 For example, within hours after acute myocar-
dial infarction (AMI), granulocyte-colony stimulating factor 
(G-CSF), which triggers stem cell mobilization, can be measured 
in the blood.13,14 Within a few days after AMI, the number of 
stem cells circulating in the blood increases by about 3–4-fold 
when compared to healthy individuals.13,15 Similar increases have 
been documented after bone fracture,16,17 skin burn18 and muscle 
injury.19 Within 24 to 72 hours after AMI, the heart releases 
stromal-derived factor 1 (SDF-1), a cytokine known to attract 
stem cells and trigger their extravasation.20 As they migrate in the 
infarcted cardiac tissue, stem cells proliferate and differentiate 
into functional cardiomyocytes.21

Bone marrow-derived stem cells (BMSC) contribute to the 
repair of various tissues. G-CSF-induced stem cell mobilization, 
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as a therapeutic approach, has shown promise in a number of 
disease models, including diabetes,22,23 coronary heart dis-
ease,24,25 stroke26 and wound healing.27 However, G-CSF has 
been  associated with severe side effects in humans and cannot be 
used for periods of time long enough to maximize the benefits of 
BMSC mobilization.28

Recently, a water-soluble extract of the cyanophyta 
Aphanizomenon flos-aquae (AFA) (StemEnhance®, “SE”) was 
shown to act as a mild mobilizer of BMSC, increasing the num-
ber of circulating stem cells by 25% within one hour of oral con-
sumption.29 We tested the hypotheses that StemEnhance® would 
increase the rate and extent of regeneration in cardiotoxin-induced 
injury of the tibialis muscle in mice,30 as well as hematopoietic 
recovery after myeloablation.

Results and Discussion

Toxicity. There was no evidence of toxicity due to SE adminis-
tration. No animals in either group died or had signs of toxicity 
or discomfort. As shown in Figure 2, animals in both groups 

Bone marrow-derived stem cells have the ability to migrate to sites of tissue damage and participate in tissue regeneration. 
the number of circulating stem cells has been shown to be a key parameter in this process. therefore, stimulating the 
mobilization of bone marrow stem cells may accelerate tissue regeneration in various animal models of injury. In this 
study we investigated the effect of the bone marrow stem cells mobilizer Stemenhance (Se), a water-soluble extract of the 
cyanophyta Aphanizomenon flos-aquae (AFA), on hematopoietic recovery after myeloablation as well as recovery from 
cardiotoxin-induced injury of the anterior tibialis muscle in mice. Control and Se-treated female mice were irradiated, 
and then transplanted with GFp+ bone marrow stem cells and allowed to recover. Immediately after transplant, animals 
were gavaged daily with 300 mg/kg of Se in pBS or a pBS control. After hematopoietic recovery (23 days), mice were 
injected with cardiotoxin in the anterior tibialis muscle. Five weeks later, the anterior tibialis muscles were analyzed for 
incorporation of GFp+ bone marrow-derived cells using fluorescence imaging. Se significantly enhanced recovery from 
cardiotoxin-injury. However, Stemenhance did not affect the growth of the animal and did not affect hematopoietic 
recovery after myeloablation, when compared to control. this study suggests that inducing mobilization of stem cells 
from the bone marrow is a strategy for muscle regeneration.
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Support of hematopoietic recovery by SE was not observed 
in this study. This observation is nonetheless consistent with the 
report by Jensen et al.29 that SE selectively increased the number 
of circulating CD34+ cells without affecting RBC, WBC, HGB, 
HCT or platelet count (also unpublished data).

Many studies have reported the ability of BMSC to migrate 
into various tissues and differentiate into functional somatic cells 
of these tissues, including muscle.32 In this process, the num-
ber of circulating stem cells has emerged as a critical parameter 
whereby more circulating stem cells means that more stem cells 
are available for migration and differentiation.33,34 The present 
study found that increasing the number of circulating stem cells 
using a daily intake of SE accelerated and enhanced the recov-
ery of CTX-induced muscle injury, and that this was linked to 
the migration of BMSC. Interestingly, significant recovery was 
also seen in the control group, supporting the view that BMSC 
naturally contribute to tissue regeneration. Similar observations 
have been made using various muscle injury models and different 
mobilizers such as G-CSF21,35 or autologous transplant.36

In both experimental and control groups, BMSC migrated to a 
much lesser extent in the non-injured left anterior tibialis muscles, 
confirming that BMSC primarily migrate towards sites of injury 
or tissue damage. Indeed, following sex-mismatched bone marrow 
transplant, male donor-derived cells were reported in relatively 
high concentration in the livers of female recipients following 
liver damage, indicating the migration of bone-marrow derived 
cells to repair the liver tissue.8 Such directed migration has been 
documented in the gut after section of an intestinal segment,37 
in the heart after AMI,7,38 or induced cardiomyopathy,39 in the 
brain after stroke,40,41 and in the liver after drug-induced liver 
damage.42

In conclusion, increasing the number of circulating stem 
cells with daily administration of SE enhanced recovery from 
CTX-induced muscle injury. This study supports the view that 
inducing endogenous bone marrow stem cell mobilization could 

showed identical body-weight growth patterns (p = 0.9). At each 
weekly time point, body weights and change in body weights, for 
the two groups did not show any statistical difference. No visual 
or behavioral differences were seen between the two groups.

Hematopoietic recovery. Overall, all hematopoietic 
 parameters were close to normal values 28 days after cardiotoxin 
administration in both the SE-treated and control groups, except 
for HGB, HCT and platelets. In both groups, PMN were slightly 
elevated. SE did not appear to have an effect on hematopoietic 
recovery (Table 1).

Recovery from CTX-induced injury. In the injury part of the 
study, the extent of the recovery was evaluated by measuring the 
area covered by fluorescence in the recovering muscles. To take 
into account the overall process of recovery, in each fluorescence 
photomicrograph all green pixels were counted. Greater regen-
eration of the anterior tibialis muscle in the SE-treated group  
(21.7 ± 2.8 mm2) was observed 5 weeks after CTX injury when 
compared to control (17.5 ± 3.0 mm2) (p < 0.05) (Fig. 3). Less 
fluorescence was seen in the uninjured left anterior tibialis mus-
cles of both groups (SE: 8.4 ± 1.0 mm2; control: 7.8 ± 0.8 mm2) 
and the slight difference in fluorescence was not statistically sig-
nificant, indicating that migration of BMSC was more signifi-
cantly directed toward the injury. Fluorescence was also seen in 
most of the main organs, such as the heart, brain, kidney, liver 
and lung, though no difference was visually seen between the 
two groups. Histological or colorimetric assays could not be per-
formed on the various organs and tissues due to the loss of the 
frozen tissue samples.

Animals received 300 mg/kg of StemEnhance (SE), which 
is roughly 10 times the dose given to humans.29 At that level, 
growth was normal and animals showed no signs of toxicity. SE 
is a 5:1 concentrate of the cyanophyta Apahnizomenon flos-aquae 
(AFA). Our observations are consistent with Schaeffer et al.31 who 
reported that consumption 16,666 mg/kg of AFA (equivalent to 
>3,000 mg/kg SE) led to no signs of toxicity in mice.

Table 1. Quantification of hemoglobin (HGB) and hematocrit (HCt), as well as counts for white blood cells (WBC), red blood cells (RBC), platelets, 
polymorph nucleated cells (pMN), lymphocytes (Lymph), monocytes (Mono), eosinophils (eos) and basophils (Baso), at day 16 and 30 after irradiation 
and transplant of BMSC in both pBS and Se-treated groups

WBC 
(103/µl)

RBC 
(103/µl)

HGB 
(103/µl)

HCT 
(103/µl)

Platelet 
(103/µl)

Day 14 28 14 28 14 28 14 28 14 28

PBS 1.93 5.05 10.10 10.11 14.20 14.13 48.47 45.97 518 976

SE 1.26 6.12 9.16* 9.47* 12.80* 13.00* 44.03* 43.27* 761 759

Reference 
Values

4.54 ± 1.84 9.89 ± 0.44 15.2 ± 0.6 48.8 ± 1.8 1336 ± 82

PMN 
(103/µl)

Lymph 
(103/µl)

Mono 
(103/µl)

Eos 
(103/µl)

Baso 
(103/µ)

Day 14 28 14 28 14 28 14 28 14 28

PBS 0.65 0.85 1.07 3.84 0.05 0.07 0.14 0.26 0.01 0.02

SE 0.50 1.14 0.58* 4.43 0.04 0.10 0.12 0.40 0.01 0.02

Reference 
Values

0.41 ± 0.26 4.08 ± 1.62 0.05 ± 0.08 0 ± 0 0 ± 0

Asterisks (*) indicate statistically significant differences between the two groups.
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humidity. Each cage was clearly marked with one mouse per 
cage. Experimental animals (Group B) were gavaged with 300 
mg/kg of SE dissolved in 1 ml PBS while control animals (Group A) 
were gavaged with 1 ml PBS alone. Cardiotoxin (CTX) was 
purchased from Sigma (St. Louis, MO). To cause an injury,  
10 µm of CTX in 100 µl PBS was injected directly into the ante-
rior tibialis muscles of the right leg.

Study design. For both Group A and Group B, three mice 
were sacrificed at Day 16 after transplantation for hematology 
tests (Fig. 1). At Day 23, the remaining animals in each group 
were divided into two subgroups. For assessment of hematopoietic 
recovery, six animals were randomly selected from each group. 
Three animals in each group were sacrificed for hematology test-
ing at days 23 and 30. For the assessment of the effect of SE on 
the regeneration of CTX-induced muscle injury, the remaining 
six animals in each group were treated on day 23 with CTX, as 
described previously. The animals continued to be treated with 
placebo or SE during the following 5 weeks and were sacrificed 
at Day 59 after transplantation for analysis of the presence of 
fluorescence in tissues.

Hematology testing. After transplantation, blood cell counts 
(WBC, RBC, hemoglobin, hematocrit, platelets, PMN, lympho-
cytes, monocytes, eosinophils and basophils) were done at days 
15 and 30. Samples of whole blood were sent to Rabbit & Rodent 
Diagnostic Associates (RRDA, San Diego, CA) for reticulocyte 
counts.

Fluorescence imaging. At day 59 after transplantation, all 
mice were sacrificed. Open-mouse imaging was conducted with 
the Olympus OV 100 Small Animal Imaging System (Olympus 
America, Melville, NY). The mice were evaluated for incorpo-
ration of GFP bone-marrow cells into tissues, including heart 
muscle, liver, kidneys, intestinal wall, brain, skin and lung. 
To evaluate the effect of SE on the recovery from CTX-injury, 
the number of GFP-positive muscle fibers was estimated using 
Photoshop 7.0 (Adobe Systems Inc., San Jose, CA), by quantify-
ing the number of pixels covering the fluorescent area.

constitute an effective approach to facilitate recovery from vari-
ous injuries, particularly muscle-related traumas.

Methods

Experimental animals. Thirty C57BL/6-GFP43,44 female donor 
mice (bred at AntiCancer, Inc.,) and 30 C57BL/6 female recipi-
ent mice, 8–10 weeks old (Purchased from Harlan Laboratories, 
Livermore, CA), were used for this study. All animals were 
weighed using an electronic balance (Spectrum; APX-203, 
Gardena, CA). The mice were housed 5 per cage. An inspection 
was performed before the administration and transplantation to 
ensure their suitability for the study.

The animals were maintained in a HEPA filtered environ-
ment in a Micro-VENT full ventilation rodent housing system 
(Allentown Caging Equipment Co., Allentown, NJ). Animal 
room controls were set to maintain temperature and relative 
humidity at 22°C ± 2°C and 55% ± 15%, respectively. The 
rooms were lit by artificial light for 12 hours each day. Cages and 
bedding were autoclaved. Water was purified by Milli-Q Biocel 
System (Millipore, Billerica, MA), autoclaved and supplied ad 
libitum to each cage via water bottles. Ampicillin (0.008% w/v) 
was added to drinking water during the period of acclimatization. 
Autoclavable rodent diet 5010 was obtained from PMI Nutrition 
International Inc., (Brentwood, MO).

All recipient mice were irradiated with a lethal dose of 8.0 
Gy total body radiation. The day after irradiation, the mice 
received 1 x 107 bone marrow cells from GFP+ donor mice via 
the tail vein. The mice were then randomly split into two groups,  
control (A) and experimental (B), and caged  individually. The 
day of bone marrow cell transplantation was set as Day 0.  
Animals were monitored for behavioral changes during the whole 
study.

Materials and consumable preparation. StemEnhance (SE), 
a water-soluble extract of the cyanophyta Aphanizomenon flos-
aquae, was supplied by STEMTech HealthSciences, Inc., SE 
was stored at room temperature and protected from light and 

Figure 1. timeline of the treatment and testing for both the control (A) and experimental (B) groups. Numbers on the timeline indicate the number of 
animals treated, dots mark the time points at which animals were sacrificed for testing, and squares indicate when hematology testing was performed 
(Ht; Day 16, 23 and 30), at which times three mice were sacrificed for each testing. All animals were injected with 10 µm of cardiotoxin in 100 µL of pBS 
in the anterior tibialis muscle of the right leg on Day 23.
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